Tree Kernel-based SVM with Structured Syntactic Knowledge for BTG-based Phrase Reordering
نویسندگان
چکیده
Structured syntactic knowledge is important for phrase reordering. This paper proposes using convolution tree kernel over source parse tree to model structured syntactic knowledge for BTG-based phrase reordering in the context of statistical machine translation. Our study reveals that the structured syntactic features over the source phrases are very effective for BTG constraint-based phrase reordering and those features can be well captured by the tree kernel. We further combine the structured features and other commonly-used linear features into a composite kernel. Experimental results on the NIST MT-2005 Chinese-English translation tasks show that our proposed phrase reordering model statistically significantly outperforms the baseline methods.
منابع مشابه
Phrase Reordering Model Integrating Syntactic Knowledge for SMT
Reordering model is important for the statistical machine translation (SMT). Current phrase-based SMT technologies are good at capturing local reordering but not global reordering. This paper introduces syntactic knowledge to improve global reordering capability of SMT system. Syntactic knowledge such as boundary words, POS information and dependencies is used to guide phrase reordering. Not on...
متن کاملLinguistically Annotated BTG for Statistical Machine Translation
Bracketing Transduction Grammar (BTG) is a natural choice for effective integration of desired linguistic knowledge into statistical machine translation (SMT). In this paper, we propose a Linguistically Annotated BTG (LABTG) for SMT. It conveys linguistic knowledge of source-side syntax structures to BTG hierarchical structures through linguistic annotation. From the linguistically annotated da...
متن کاملA Generalized Reordering Model for Phrase-Based Statistical Machine Translation
Phrase-based translation models are widely studied in statistical machine translation (SMT). However, the existing phrase-based translation models either can not deal with non-contiguous phrases or reorder phrases only by the rules without an effective reordering model. In this paper, we propose a generalized reordering model (GREM) for phrase-based statistical machine translation, which is not...
متن کاملA unified approach for effectively integrating source-side syntactic reordering rules into phrase-based translation
Phrase-based translation models, with sequences of words (phrases) as translation units, achieve state-of-the-art translation performance. However, phrase reordering is a major challenge for this model. Recently, researchers have focused on utilizing syntax to improve phrase reordering. In adding syntactic knowledge into phrase reordering model, using handcrafted or probabilistic syntactic rule...
متن کاملA Linguistically Annotated Reordering Model for BTG-based Statistical Machine Translation
In this paper, we propose a linguistically annotated reordering model for BTG-based statistical machine translation. The model incorporates linguistic knowledge to predict orders for both syntactic and non-syntactic phrases. The linguistic knowledge is automatically learned from source-side parse trees through an annotation algorithm. We empirically demonstrate that the proposed model leads to ...
متن کامل